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A global shock solution for the nonlinear shallow water equations (NSWEs) is
found by assigning proper seaward boundary data that preserve a constant incoming
Riemann invariant during the shock wave evolution. The correct shock relations,
entropy conditions and asymptotic behaviour near the shoreline are provided along
with an in-depth analysis of the main quantities along and behind the bore. The
theoretical analysis is then applied to the specific case in which the water at the front
of the shock wave is still. A comparison with the Shen & Meyer (J. Fluid Mech.,
vol. 16, 1963, p. 113) solution reveals that such a solution can be regarded as a
specific case of the more general solution proposed here. The results obtained can be
regarded as a useful benchmark for numerical solvers based on the NSWEs.
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1. Introduction
Breaking waves on beaches have always been a fundamental research topic in

the analysis of the nearshore zone dynamics and related phenomena. This is mainly
due to the fact that breaking waves act as a forcing for rip and longshore currents
(Guard & Baldock 2007; Brocchini & Dodd 2008; Zhang & Liu 2008) and further
represent one of the main causes of sediment transport and erosion on sandy beaches
(Elfrink & Balbock 2002; Pritchard & Hogg 2005). Hence, accurate and correct
modelling of wave breaking phenomena and breaking wave motion is a crucial
issue for all scientists who are interested in coastal phenomena (e.g. Synolakis 1987;
Antuono & Brocchini 2008; Chang, Hwang & Hwung 2009).

With respect to this, analytical solutions are of fundamental importance for the
assessment of the accuracy of any numerical solver used to model the nearshore
dynamics. In this context, the most widespread equations are the nonlinear shallow
water equations (NSWEs), as they enable modelling of the wave breaking in a simple
and reliable way. In fact, within the theory of hyperbolic systems, breaking is usually
represented as a sharp discontinuity in the flow quantities (hence the name ‘shock
wave’) which evolves satisfying specific conditions stemming from the laws of mass
and momentum conservation (see, for example, Toro 1999, 2001; Wu & Cheung 2007).

Unfortunately, despite the great need for shock wave solutions, at present the
analytical results available in the literature have a validity which is limited to short
temporal and spatial domains. The first and most famous solution is that provided
by Shen & Meyer (1963). Using an asymptotic analysis, they found the main features
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of the bore evolution near the shoreline and during the run-up. Their solution is,
however, local and holds only in a small neighbourhood of the point at which the
bore collapses on the shore. The global behaviour (that is, for finite intervals of
time and space) of the Shen & Meyer solution has been inspected by Peregrine
& Williams (2001), who described the bore-induced run-up on a truncated beach.
Further, a wider class of solutions for the run-up/run-down induced by a bore has
been recently found by Pritchard, Guard & Baldock (2008) through the definition of
proper boundary conditions behind the shock wave. The main limitation of the latter
two solutions is that they are based on the assignment of the boundary conditions
on a moving curve which starts at the point of bore collapse. First, this implies
that the region of validity of the solution is rather small and close to the shoreline.
Further, the assignment along a moving curve makes the numerical implementation
rather difficult. More recently Antuono, Hogg & Brocchini (2009) found an analytical
solution for a similar problem but without the previous difficulties in the boundary
data assignment. In any case, in all the cases cited above, the problem is not that of a
natural bore climbing on a sloping beach but that of a dam break on a sloping plane.
In fact, as shown by Whitham (1958) and Hibberd & Peregrine (1979), a natural
bore has no discontinuity at the shoreline as a consequence of the so-called bore
collapse at the shoreline and, therefore, cannot be modelled through a dam break
problem.

In the present study, we provide a global solution for a special case of a shock
wave. The boundary data are assigned along the seaward boundary of the sloping
beach, that is, at x = −1 (x being the dimensionless onshore coordinate) for all times,
and the shock evolution is followed up to the run-up/run-down region. The paper
is organized as follows: § 1 introduces the NSWEs and their hyperbolic structure,
§ 2 describes the shock relations and the entropy conditions while § 3 is devoted to
the definition of the boundary conditions. Finally, in §§ 4–6, the shock solution is
illustrated along with the main results.

2. The NSWEs
For wavefronts approaching a uniformly sloping frictionless beach with a small

incident angle (Ryrie 1983; Brocchini & Peregrine 1996), the onshore problem of
weakly two-dimensional NSWEs (in dimensionless form) is

dt + Qx = 0,

Qt +

[
d 2

2
+

Q2

d

]
x

= hx d,

⎫⎬
⎭ (2.1)

where Q = u d is the onshore flux, u is the onshore velocity, d = h+η is the total water
depth, η is the free surface elevation, h = −x is the still-water depth and subscripts
represent partial differentiation. The axes’ origin is posed at the undisturbed shoreline;
the x-coordinate gives the onshore direction and points in the landward direction (x, z)
forming a right-handed Cartesian reference frame (see figure 1). The scale factors for
vertical lengths, horizontal lengths and times are, respectively, the still-water depth at
the seaward boundary h∗

0 = h∗(x = −1), h∗
0/ tan θ and t∗

0 =
√

h∗
0/g /tan θ , where tan θ

is the beach slope, θ the angle of the plane beach with respect to the horizontal plane
and the starred variables indicate dimensional variables. More details can be found
in Brocchini & Peregrine (1996).
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Figure 1. Sketch of geometry and flow dimensionless variables for the beach problem.

The system (2.1) is hyperbolic and can be cast into its characteristic form by using
the following characteristic variables:

α = u + t + 2 c, β = u + t − 2 c, (2.2)

where c =
√

d . Using α and β , the system (2.1) becomes

dα/dt = 0, on curves such that dx/dt = u + c,

dβ/dt = 0, on curves such that dx/dt = u − c.

}
(2.3)

The curves defined in (2.3) are called characteristic curves. When the flow is subcritical
(that is, u − c < 0 < u + c), we call the former ones ‘incoming’, since they move from
the seaward boundary (x = −1) to the shoreline and the latter ones ‘outgoing’, since
they move towards the opposite direction. As pointed out in Antuono & Brocchini
(2007), the former curves carry information on the incoming waves entering the
seaward boundary while the latter ones carry information on the wave reflection at
the shoreline.

3. Shock relations
In this section we summarize the shock relations for the NSWEs in order to give a

simpler treatment of the shock wave evolution and asymptotic behaviour.
Before proceeding to the analysis, we underline that the term ‘shock wave’ is

borrowed from the gas dynamics literature, while in the hydraulic context it is
common to refer to a ‘hydraulic jump’ for the stationary discontinuity and to a
‘bore’ for the moving discontinuity. In any case, in the present study we adopt the
nomenclature used in the theory of hyperbolic systems and, therefore, we refer to a
shock wave to indicate a sharp discontinuity in the solution of the NSWEs.

The dimensionless shock relations for the NSWEs are

s [[d]] = [[Q]], (3.1a)

s [[Q]] =

[[
d 2

2
+

Q2

d

]]
, (3.1b)

where s is the shock wave velocity and [[ f ]] = f2 − f1 represents the jump of the
quantity f across the discontinuity. The subscript ‘2’ indicates the values seaward of
the shock wave while ‘1’ indicates the values shoreward of the shock wave.

Substituting (3.1a) into (3.1b), we obtain the following:

s2 (d2 − d1) =
1

2
(d2 + d1) (d2 − d1) +

Q2
2

d2

− Q2
1

d1

. (3.2)
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Now we have two possible choices. In the first case we extract Q2 from (3.1a),
substitute it into (3.2) and finally solve for s, obtaining

s = u1 ±

√
1

2

(
d 2

2

d1

+ d2

)
. (3.3)

In the second case we extract Q1 from (3.1a), substitute it into (3.2) and again solve
for s, obtaining

s = u2 ±

√
1

2

(
d 2

1

d2

+ d1

)
. (3.4)

It is evident that (3.3) and (3.4) (as well as (3.1a) and (3.1b)) are linked by the symmetry
(d2, u2) ↔ (d1, u1). As a consequence, a choice of the signs in front of the square roots
is not possible unless proper breaking-symmetry conditions are introduced.

3.1. Entropy conditions

The proper way to break the symmetry is to use the so-called entropy conditions.
Such conditions have been built to avoid non-physical solutions of hyperbolic systems
and to enable recovery of the uniqueness of the solution.

The term ‘entropy condition’ is borrowed from gas dynamics, and refers to the fact
that the variation of entropy in a gas must satisfy the second law of thermodynamics.
In the NSWEs there is no entropy equation and the second law of thermodynamics
is replaced by the request that the time variation of the water energy across the shock
wave is non-positive. Following Stoker (1957) and adapting his results to the notation
at hand, we obtain

dE

dt
=

m

2 d1 d2

[[ d ]]3 � 0, (3.5)

where E is the water energy and m =(u2 − s) d2 = (u1 − s) d1 is the mass flux across
the shock wave (note that this quantity is continuous). The inequality (3.5) is satisfied
when m � 0, [[ d ]] � 0 or m � 0, [[ d ]] � 0. As we prove in the following, these
conditions correspond to a shock wave generated, respectively, by the collapse of the
α- and β-characteristic curves.

The reasoning above requires the definition of the energy of the system and the
related equation. Another approach is based on the use of the standard theory of
hyperbolic systems. In this context, entropy conditions apply to each characteristic
field of the hyperbolic system and fix a specific direction of propagation of the shock
wave (see, for example, Toro 1999). Furthermore, since the shock wave must be ‘fed’
by the characteristic field associated with it, the shock velocity must be smaller than
the velocity of the characteristic curves ‘behind’ the shock wave and greater than the
velocity of the characteristic curves ‘in front’ of it. For shock waves generated by the
collapse of the α-characteristic curves, they are as follows,

u2 + c2 � s � u1 + c1, (3.6)

while for shock waves generated by the collapse of the β-characteristic curves, they
are as follows,

u2 − c2 � s � u1 − c1. (3.7)

The ‘direction’ of the inequalities above is a consequence of the direction of the
x-axis. As for the gas dynamics, conditions (3.6) and (3.7) imply that in the frame of
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reference moving with the shock wave, the flow is supercritical ‘in front’ of the shock
and subcritical ‘behind’ it.

In the following we let ‘α-shock’ denote the shock wave generated by the collapse
of the α-characteristic curves and let ‘β-shock’ denote the shock wave generated by
the collapse of the β-characteristic curves, even though we just deal with the α-shock.
Nevertheless, all the results found for the α-shock can be adapted to the β-shock
following the procedure shown in the following. Before proceeding to the analysis, we
combine (3.3) and (3.4) as follows:

0 = u2 − u1 ±

√
1

2

(
d 2

1

d2

+ d1

)
∓

√
1

2

(
d 2

2

d1

+ d2

)
. (3.8)

3.2. The α-shock

As a consequence of the entropy condition (3.6), relation (3.3) becomes

s = u1 +

√
1

2

(
d 2

2

d1

+ d2

)
. (3.9)

Then, since (3.8) must be satisfied, relation (3.4) becomes

s = u2 +

√
1

2

(
d 2

1

d2

+ d1

)
, (3.10)

and (3.8) can be rewritten as

u2 − u1 = (d2 − d1)

√
1

2

(
1

d2

+
1

d1

)
. (3.11)

The expression (3.10) satisfies the entropy condition (3.6) if

√
d2 �

√
1

2

(
d 2

1

d2

+ d1

)
. (3.12)

The former inequality is true if and only if d2 � d1. As a consequence of (3.11), it is
u2 � u1. Finally, using (3.9), we get

d2 = −d1

2
+

1

2

√
d 2

1 + 8 d1 (s − u1)2. (3.13)

3.3. Asymptotic behaviour near the shoreline

As pointed out by Antuono & Brocchini (2007), the shoreline (that is, the line along
which d = 0) is a singular curve for the NSWEs. As a consequence, special behaviour
of the shock waves is expected as d → 0+, that is, as the shoreline is approached.

Indeed, let us consider an α-shock approaching the shoreline and assume that the
shock velocity is always bounded. Then, using (3.9) and (3.10), the only way to get a
finite value of s is that both d1 and d2 approach zero at the shoreline and that one of
the following limits holds:

d 2
2

d1

= O(1)

(
or equivalently

d 2
1

d2

→ 0

)
, for d2, d1 → 0+, (3.14)
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or

d 2
1

d2

= O(1)

(
or equivalently

d 2
2

d1

→ 0

)
, for d2, d1 → 0+. (3.15)

This is the so-called bore collapse and proves that [[ d ]] = 0 at the shoreline. In any
case, since for the α-shock d2 � d1 ‘everywhere’, it follows that only (3.14) can be
satisfied.

Proof. Let us assume that (3.15) is true for the α-shock. Then, there exists a finite
value m1 > 0 such that d2 =m1 d 2

1 for d2, d1 → 0+. Since d2 � d1, it follows that

m1 d 2
1 � d1 for d1 → 0+ =⇒ d1 � 1/m1 > 0 for d1 → 0+,

which is not possible. Then, (3.15) is false and (3.14) is the correct choice.

Finally, we note that (3.14) implies that d2 = m1

√
d1 as d1 → 0+ (m1 is a positive

value) and that using (3.10) yields s → u2. Substituting such relations into (3.9) and
(3.10), we finally get

m1 =
√

2 (u2 − u1)|d1=0. (3.16)

In the following we assume the variables in front of the shock wave (that is, d1 and
u1) to be known.

4. The boundary conditions: the α-constant N-wave
Use of the relations found above to solve the shock wave evolution is a prohibitive

task. Indeed, we have two known values, that is, d1 and u1, and three unknowns, that
is, d2, u2 and s. In principle, one could express the physical variables d2 and u2 as
functions of the Riemann invariants α2 and β2 behind the shock and then try to get
α2 by making the α datum travel from the seaward boundary of the domain up to
the shock rear side. In this case, the problem would be closed (i.e. we would have the
same number of data and unknowns). In any case, the incoming characteristic curves
are influenced by the field of the β invariant which, in turn, is influenced by the shock
wave. As a consequence, the problem appears as a complex nonlinear interaction
between the shock and the fields behind it.

To solve the problem we proceed as follows: we choose a boundary datum capable of
generating an α-constant field behind the shock wave. In this case, we know the value
α2 everywhere along the shock path and can close the equations given by the shock
relations. As a consequence, before proceeding to the analysis, we dedicate the present
section to the description of the boundary data.

As explained in Antuono & Brocchini (2007), when the flow is subcritical, the
incoming characteristic curves are associated with the signals entering the sloping
beach region, and the knowledge of such signals is necessary and sufficient to describe
the global wave dynamics. Since the incoming curves carry the α invariant, it follows
that the only datum to be assigned at the seaward boundary (that is, at x = −1) is
α. However, here we prefer to express the assignment problem through the physical
variables u and c =

√
d . Specifically, we decompose them into an incoming component

and a reflected component, that is, we set u(t, −1) = uI (t) + uR(t) and c(t, −1) = 1 +
cI (t) + cR(t). Since α is associated only with the incoming components and β only
with the reflected components, using (2.2) it follows that

α = uI + t + 2 + 2 cI ⇒ uR = − 2 cR, (4.1)

β = uR + t − 2 − 2 cR ⇒ uI = 2 cI . (4.2)
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Figure 2. (a) The jump in the α-field in the case of still water for t < 0. (b) The associated
incoming signal uI (t).

Incidentally, we underline that such a decomposition is not possible when we use d

and/or η since α and β are not linearly dependent on such variables. Substituting the
second relation of (4.2) into the first of (4.1), we finally get

α = 2 uI + t + 2 = 4 cI + t + 2. (4.3)

Now, let us assume the shock wave enters the domain at t = 0 and α ≡ α2 for t > 0.
Then, using (4.3), we obtain the boundary datum assignment

α(t, −1) ≡ α2 = 2 uI(t) + t + 2 = 4 cI(t) + t + 2, ∀ t > 0, (4.4)

and, therefore, we find

uI (t) =
α2 − 2 − t

2
, cI (t) =

α2 − 2 − t

4
, ∀ t > 0. (4.5)

The boundary data above are linearly decreasing functions of t and represent an
N-wave (the wave shape resembles that of a letter ‘N’). Since such a wave induces a
constant α-field in the fluid region behind the shock wave, we call it the α-constant N-
wave. The problem is completely defined when the jump [[α]] = α2 −α1 at t = 0, x = −1
is specified.

In figure 2(a) we illustrate one case in which the water is still for t < 0 (that is,
α = 2 + t) and α ≡ α2 = 2.3 for t > 0. In figure 2(b), the associated incoming signal
uI (t) is shown.

5. The shock solution
Let us consider the shock wave generated by the α-constant N-wave defined in the

previous section. Since α2 is known along the shock path, the only unknowns are β2

and s. The dependence of the shock relations (3.9) and (3.10) on β2 is easily obtained
by expressing u2 and d2 as functions of the Riemann invariants. Indeed, using (2.2),
we get

u2 =
α2 + β2

2
− t, d2 =

(α2 − β2)
2

16
. (5.1)

At this stage, one would like to combine relations (3.9) and (3.10) in order to
eliminate the dependence on β2 and make s explicit to solve the following initial value
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problem:

dx

dt
= s(d1(x, t), u1(x, t), t), x(0) = −1. (5.2)

Unfortunately, it is not possible to make s explicit, and we are forced to proceed as
follows. First, we consider (3.11) and eliminate u1 and u2 using the definition of α:

u1 = α1 − 2
√

d1 − t = α1 − 2 c1 − t, u2 = α2 − 2
√

d2 − t = α2 − 2 c2 − t.

Then, after rearrangement, we get the following polynomial equation:

z6 − 9 c1 z4 + 8
√

c1 (α2 − α1 + 2 c1) z3 −
[
2 (α2 − α1 + 2 c1)

2 + c2
1

]
z2 + c3

1 = 0, (5.3)

where z = c2/
√

c1 (see Appendix A for more details). The polynomial in (5.3) admits
six roots (both real and complex) and the correct root has to be chosen among the
real ones through the entropy conditions. Specifically, since d2 � d1, the correct root
is that satisfying z �

√
c1. This root is evaluated numerically (as explained in detail in

the following section) and used to get d2 and then s through (3.9). Finally, the shock
velocity is used to integrate (5.2).

Note that, because of the entropy conditions, the variable z has order of magnitude
equal to 1 all over the fluid domain (that is, offshore and nearshore). This ensures a
uniform accuracy in the numerical evaluation of the roots.

6. Results
In the theoretical scheme described above, the fields d1(x, t) and u1(x, t), which

describe the flow dynamics in front of the shock wave, can be chosen in a general
way. For the sake of simplicity, we assume that the water is still before the shock
enters the sloping region and, therefore, we set u1 ≡ 0 and d1 =

√
−x (see figure 2).

The polynomial roots of (5.3) have been computed using the Matlab built-in
function roots, and the evaluation is stopped when d1 � 10−12. The numerical
integration of (5.2) has been performed using a fourth-order Runge–Kutta scheme.
The time step to be used as a reference inside the four substeps of the Runge–Kutta
scheme is given by

dt = τ0 [1 − (1 − d1)
n] , with n = 12, τ0 = 10−4. (6.1)

This choice is motivated by the request for a higher accuracy as the shock wave
moves shoreward (that is, as d1 goes to zero). Indeed, the specific structure of (6.1)
approximately gives dt 
 τ0 at the seaward boundary and in the middle part of
the sloping region (where d1 = O(1)) while dt 
 n τ0 d1 near the shoreline. Such
linear behaviour of dt as a function of d1 is needed to make the solution go up to
d1 = O(10−12) near the shoreline (for lower values of d1 the computation is stopped,
as stated above). The request for d1 = O(10−12) near the shoreline is due to the fact
that the accuracy on the seaward side of the shock wave is generally smaller. In
fact, as a consequence of the results found in § 3.3, it is d2 


√
d1 = O(10−6) and

c2 =
√

d2 =O(10−3) near the shoreline.
The total computational time is about 20 s for α2 = 2.3. In this case, the accuracy of

the solution is shown in figure 3(a), where the absolute error between the theoretical
value of α2 and that obtained through numerical implementation are provided. The
maximum error is about 1 × 10−4 and decreases as the shock propagates towards
the shore, proving that (6.1) is a good choice for the time step. The error caused in
the evaluation of shock relations is of the same order as in the machine precision,
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Figure 3. The shock solution for α2 = 2.3. (a) The absolute error (�α2) between α2 and its
value as computed by numerical integration of (5.2). (b) The shock path (solid line), the still
shoreline (dotted line) and the shoreline after the shock arrival (dashed line). (c)–( f ) The pairs
(η2, η1), (u2, u1), (d2, d1) and (Q2,Q1), respectively. The solid lines represent the quantities
behind the shock while the dashed lines show the quantities in front of the shock. The dotted
line in (d ) represents the shock velocity s.

that is, 2.22 × 10−16. Figure 3(b) shows the shock path from the seaward boundary
up to the still shoreline. We define the shoreline xN as the curve separating the wet
part of beach from the dry one. Such a definition is equivalent to setting ẋN = u (the
dot indicating the t-derivative). Along xN we assume c = 0. Using the definition of xN

together with the definitions of α and β , we can rewrite the condition as ẋN = α − t .
Since behind the shock α ≡ α2, we get the solution

xN (t) = x0 + α2 (t − t0) − t2

2
+

t2
0

2
, (6.2)
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Figure 4. (a) The shock velocity (thick lines) and u2 (thin lines). (b) The shock path (the thin
dotted line represents the still shoreline). In all panels α2 = 2.1 (dotted lines), 2.3 (dashed lines)
and 2.5 (solid lines).

where x0 and t0 are the x- and t-coordinates at which the shock reaches the shoreline.
Note that such a solution, which is represented by a dashed line in figure 3(b), is
similar to that given by Shen & Meyer (1963). Finally, in figures 3(c)–(f ) the pairs
(η2, η1), (u2, u1), (d2, d1) and (Q2, Q1) are shown. Moreover, in figure 3(d ) the shock
wave velocity has been drawn (the dotted line), showing that s converges to u2 as
d1 approaches zero. Note that the bore collapse at the shoreline leads to a rapid
change in the trend of all the quantities above and an increase in the size of their
time derivatives, which become unbounded at the shoreline. However, as proved in
Appendix A, the solution is always bounded.

In figure 4 we show the comparison between the shock velocity (a) and the shock
path (b) for different values of α2 (the shock path is drawn together with the shoreline
evolution behind it). As expected, the dynamics are stronger as α2 increases, even if
the global behaviour is quite similar.

7. The solution behind the shock wave
Using the characteristic curves it is possible to build the flow field behind the shock

wave. First, using (2.2), we rewrite the second expression of (2.3) as

dx

dt
=

(
α2 + 3 β

4
− t

)
on curves such that β = constant, (7.1)

and, integrating, we obtain

x = xs +

(
α2 + 3 β

4

)
(t − ts) − t2

2
+

t2
s

2
, (7.2)

where (ts, xs) denotes the point along the bore intersected by the specific β-
characteristic curve. For the sake of clarity, we prefer to use the symbol β for
the solution in the fluid region behind the shock and β2 for the solution along the
rear side of the shock wave, even if they represent the same value. Indeed, the β-
characteristic curve carries the values of β2 from the rear side of the shock wave to
the fluid region behind it. In the following we just use the symbol β .

A straightforward representation of the shock wave provides ts as independent
variable and xs = xs(ts), β = β(ts). However, as proved in Appendix B, it is possible
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Figure 5. (a) The β-characteristic and α-characteristic curves (the shock is represented by
thick solid lines). (b) A sketch of the α-characteristic curve collapse along the shock wave. In
both panels α ≡ 2.3.

and more convenient to use β as independent variable and write ts = ts(β) and,
consequently, xs = xs(ts(β)) = xs(β). This means that both ts and xs univocally depend
on the chosen value of β . As a consequence of this choice, (7.2) depends only on x, t

and β . In Appendix B, we prove that for each pair (t, x) with t � ts(β), it is possible
to make β explicit (that is, β =β(t, x)) and that such a solution is unique. Since
α ≡ α2, it is possible to get the physical variables d and u in the region behind the
shock through (2.2). The specific value of β(t, x) is obtained by means of numerical
evaluation. The uniqueness of β(t, x) ensures that as long as the boundary condition
described in § 4 holds, no further breaking waves are generated inside the α-constant
region.

Using β(t, x), it is possible to integrate the first equation of (2.3) and obtain the
α-characteristic curves. In figure 5(a), we show the path of the α- and β-characteristic
curves, while in figure 5(b), the collapse of the former ones along the shock wave is
depicted.

We recall that the validity of the present solution is subject to the condition α ≡ α2

which, in turn, depends on the seaward boundary assignment. From the theory of
hyperbolic systems, we know that, as long as the solution is continuous, the α-
constant region is bounded by the last α-characteristic curve which generates from
the incoming signal uI (t) at the seaward boundary. Such a curve is represented by
the thick dashed line in figure 5(a). (In this figure we assigned the boundary datum
uI (t) up to t =0.6.) In principle a shock wave can occur in the fluid domain aside
the α-constant region and then modify the extension of such a region. In any case,
if the condition α ≡ α2 holds for all t > 0, we get the solution shown in figure 6
(in this case α2 ≡ 2.3). It corresponds to a single run-up/run-down event followed
by a sudden water withdrawal. Note that even though the starting jumps are not
very large ([[ d ]] 
 [[ u ]] 
 0.16 at x = −1), the maximum run-up given by (6.2) is quite
large (Rup 
 0.6). Incidentally, we highlight that the β-characteristic curves (figure 6a)
coincide with the contour lines of the water depth.

In figure 7 we show the solution for the flow velocity and the water depth at a fixed
x-coordinate (x∗ in the figure) and for all times. Again, we denote by u and d the
solutions inside the region with α constant, since we prefer using the symbols u2 and
d2 for the solutions along the rear side of the shock wave. In figure 7(a), we show the
comparison between the flow velocity at the seaward boundary as computed through
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Figure 6. (a) The β-characteristic curves. (b) The α-characteristic curves (the shock is
represented by thick solid lines). In both panels α ≡ 2.3.

numerical integration of (5.3) and the incoming signal uI (t) given in (4.5) which was
derived starting only from theoretical considerations.

The comparison is consistent up to t = tcrit = 1.6640 when the flow at the seaward
boundary becomes critical. For t > tcrit the flow is supercritical and, therefore, it is no
longer possible to assign continuous data at the seaward boundary (even if a new
shock wave is admissible since it would make the flow subcritical). In any case, the
match between the two data is very good, especially during the initial stages. (The
same is true for cI (t), which is not shown.) This is due to the fact that the reflected
signals are almost zero during the first instants of the shock evolution, while they
become ever larger for longer times. This also validates our previous analysis on the
incoming/reflected components and on the α-constant N-wave. Finally, such a result
also proves that uI (t) and cI (t) can be effectively used as approximations of u(t, −1)
and c(t, −1) during the boundary data assignment.

With regard to the water depth, figure 7(b, d, f, h) clearly shows that the swash event
caused by the shock collapse is made of a thin film of water. Specifically, at x∗ = 0.0
and x∗ =0.25 the water depth decreases from O(10−2) up to O(10−3). This is further
confirmed by figure 8, where we illustrate the total water depth at fixed times (t∗

in the panels). The instant t∗ = 1.2426 corresponds to the time at which the shock
wave reaches the shoreline, while t∗ = α2 = 2.3 is the instant at which the maximum
run-up occurs. The shape of such a run-up/run-down solution suggests a relationship
between the present model solution and that proposed by Shen & Meyer (1963). This
is analysed in the following section.

Finally, figure 9 shows the flow velocity at fixed times (t∗ in the panels). The
velocity profile at t∗ = 1.3426 proves that the maximum onshore velocity is reached
somewhere after the bore collapses (t∗ =1.2426) and before the maximum run-up is
reached (t∗ = 2.3). Specifically, at t∗ = 2.3 the velocity is negative, except at the point
of maximum run-up, where it is zero.

7.1. Comparison with the Shen & Meyer (1963) solution

As explained in § 1, the Shen & Meyer (1963) solution is an asymptotic result of the
propagation of a bore into water at rest near the shoreline. The similarities with the
solution shown in § 7 are many. First, their solution is obtained with the assumption
that α ≡ 2 in a neighbourhood of the shock wave and of the shoreline generating
after its collapse. After the Shen & Meyer (1963) solution is adapted to the notation
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used in the present study, it reads

d(x, t) =
1

9 (t − t0)2
(x − xN (t))2, (7.3)

where

xN (t) = x0 + 2 (t − t0) − (t − t0)
2

2
(7.4)

is the shoreline, and x0 and t0 are the x- and t-coordinates at which the shock
reaches the shoreline. Note that the x-derivative of the water depth at the shoreline
is null, which differs from the classic solution by Carrier & Greenspan (1958) for
non-breaking waves. It is simple to prove that such a property is intrinsic to every
solution built on the assumption that the α-field is constant. Indeed, let us consider
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Figure 9. The flow velocity, u(t∗, x) (solid lines). In all panels α2 = 2.3.

the constitutive equation of the shoreline. We have

dxN

dt
= u(t, xN (t)) = α(t, xN (t)) − t = α2 − t. (7.5)

Then, taking the t-derivative, we get

d2xN

dt2
= ut |x=xN

+ u|x=xN
ux |x=xN

= − 1. (7.6)

By comparison with the momentum equation of the NSWEs, we immediately obtain
the following:

dx |x=xN
= 0. (7.7)
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Now, we come back to the present model solution and, using the result above and
expanding d(x, t) in a Taylor series near the shoreline, we find

d(x, t) = 1
2
dxx |x=xN

(x − xN (t))2 + O((x − xN (t))3), (7.8)

where xN (t) is given by (6.2). By comparison between (7.3) and (7.8), the Shen &
Meyer (1963) solution gives

dxx |x=xN
=

2

9 (t − t0)2
, (7.9)

where xN (t) is now given by (7.4). In Appendix C we prove that this result does
not depend on the specific value of α2 and, thus, it is identical for all the solutions
built on the assumption that α is constant. However, since the higher contributions
generally depend on α2 and the flow conditions shoreward of the shock, the present
model global solution represents an extension and a generalization of the Shen &
Meyer (1963) asymptotic solution. Finally, in figure 10 a comparison between the
two solutions is provided which confirms the identical asymptotic behaviour at the
shoreline.

Since dxx → ∞ as t → t+
0 , the Shen & Meyer (1963) solution is usually said to be

singular at t = t0. However, this is just an apparent singularity. Indeed, let us denote
by I(t) the neighbourhood of validity of the Taylor expansion through which the
formula (7.3) is obtained. As proved in § 3.3, the limit for t → t+

0 of the water depth
is zero. This implies that I(t) must reduce to the point xN (t0) as t → t+

0 . Further,
it must reduce in such a way that a generic point x inside the neighbourhood must
converge to xN (t0) faster than (t − t0)

2 goes to zero. In this way the water depth of
(7.3) converges to zero.

8. Conclusions
Starting from the unique assumption of constant incoming Riemann invariant α,

a novel shock solution has been found for the NSWEs. Such a solution differs from
the results available in the literature since: (i) it describes the global evolution of the
shock wave inside the sloping region and, therefore, is not restricted to narrow zones
of the fluid domain; (ii) it is based not on a dam break problem but on the natural
propagation of the shock wave from the seaward boundary up to the shoreline. An
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in-depth analysis has been provided for the seaward boundary data assignment, and
a special N-wave profile has been found such that it generates the α-constant field.
The result has been studied in the specific case in which the flow in front of the
shock wave is still providing a large fan of solutions for the flow quantities along the
shock wave and behind it. A simple theoretical inspection reveals that the Shen &
Meyer (1963) solution is a particular case of the general solution proposed here.
Further, the clear and simple description of the seaward boundary conditions makes
the comparison with numerical simulations straightforward. For these reasons, the
present shock wave solution can be regarded as a useful benchmark for the numerical
solvers based on the NSWEs (see, for example, Bokhove 2005; Briganti & Dodd
2009; Kubatko et al. 2009).

This work was partially founded by the Italian Ministero dei Trasporti within
the framework of the ‘Programma di Ricerca INSEAN 2007–2009’ and ‘Programma
sulla Sicurezza INSEAN 2009’. Finally, the author would like to thank Professor
M. Brocchini and the three anonymous referees for their useful comments and
suggestions.

Appendix A. Details of derivation of (5.3) and related formulations
Let us consider (3.11) and eliminate u1 and u2 using the definition of α:

u1 = α1 − 2
√

d1 − t, u2 = α2 − 2
√

d2 − t. (A 1)

Then, we get

(α2 − α1) − 2 (
√

d2 −
√

d1) = (d2 − d1)

√
1

2

(
1

d2

+
1

d2

)
, (A 2)

and, using c2 =
√

d2 and c1 =
√

d1, we rewrite the expression above as follows:

(α2 − α1) − 2 (c2 − c1) =

(
c2
2 − c2

1

)
√

2 c1 c2

√
c2
2 + c2

1. (A 3)

Now, squaring and rearranging, we obtain

c6
2 − 9 c2

1 c4
2 + 8 c2

1 (α2 − α1 + 2 c1) c3
2 − c2

1

[
2 (α2 − α1 + 2 c1)

2 + c2
1

]
c2
2 + c6

1 = 0.

For computational reasons, it is more convenient to define z = c2/
√

c1 and rewrite the
polynomial above as follows:

z6 − 9 c1 z4 + 8
√

c1 (α2 − α1 + 2 c1) z3 −
[
2 (α2 − α1 + 2 c1)

2 + c2
1

]
z2 + c3

1 = 0. (A 4)

As a consequence of the results found in § 3.3, it is z = O(1) all over the fluid domain
and, therefore, (A 4) is useful to find the asymptotic behaviour of the shock wave
near the shoreline (that is, for c1 going to zero). First, let us assume

(α2 − α1) = (α2 − α1)|c1=0 + O(c1) = (u2 − u1)|c1=0 + O(c1). (A 5)

Then, expanding (A 4) in series of c1, we find that

z = 21/4
√

(u2 − u1)|c1=0 −
√

2 c1 + O(c1), (A 6)
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which corresponds to

c2 = 21/4
√

(u2 − u1)|c1=0

√
c1 −

√
2 c1 + O

(
c

3/2
1

)
, (A 7)

d2 =
√

2 (u2 − u1)|c1=0 c1 − 27/4
√

(u2 − u1)|c1=0 c
3/2
1 + O

(
c2
1

)
. (A 8)

Note that the first term on the right-hand side of (A 8) is in agreement with the results
of § 3.3. Finally, substituting (A 7) into the second equation of (A 1), we find that

u2 = α2 − t − 25/4
√

(u2 − u1)|c1=0

√
c1 + 2

√
2 c1 + O

(
c

3/2
1

)
, (A 9)

while substituting (A 8) and (A 9) into (3.10), we get

s = α2 − t − 25/4
√

(u2 − u1)|c1=0

√
c1 +

5√
2

c1 + O
(
c

3/2
1

)
. (A 10)

Appendix B. Uniqueness of β(t, x)

Starting from (7.2), let us consider the following expression:

φ(x, t, β) = − x + xs +

(
α2 + 3 β

4

)
(t − ts) − t2

2
+

t2
s

2
. (B 1)

According to Dini’s theorem, the condition φβ �=0 ensures that a unique solution
β(x, t) of the equation φ = 0 exists. First, we compute φβ and rewrite it as follows:

φβ(x, t, β) = ṫs

[
s −

(
α2 + 3 β

4

)
+ ts

]
+ (t − ts), (B 2)

the dot here indicating the β-derivative (note that s = ẋs/ṫs). The expression above is
equivalent to

φβ(x, t, β) = ṫs (s − u2 + c2) + (t − ts), (B 3)

and, since s � u2 (see (3.10)) and t � ts , we just have to prove that ṫs � 0. Indeed, in
this case, it would be φβ > 0 and φβ = 0 only at the point where the shock reaches the
shoreline. This point represents a singularity since here β = α2, the β-characteristic
curve coincides with the α-characteristic curve and they both coincide with the
shoreline. In any case, this does not present a problem for the present solution.

To prove that ṫs � 0, we first have to find the sign of ṡ. Then, we compute the
β-derivative of (3.9). We get

ṡ =
1

2
√

2
√

d2
2/d1 + d2

(
2

d2

d1

ḋ2 + ḋ2

)
� 0, (B 4)

since ḋ2 = −(α2 − β)/8 � 0. (Note that c2 � 0 implies α2 � β .) Finally, we compute
the β-derivative of (3.10) and find

ṫs =
1

2
− ṡ +

1

2
√

2
√

d2
1/d2 + d1

(
−d2

1

d2
2

ḋ2

)
� 0. (B 5)

Such a result justifies the use of β as independent variable instead of ts . Indeed, since
ts(β) is a non-decreasing function of β , it is possible to make ts explicit and write β(ts).
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(Note that this is again a non-decreasing function of ts .) This proves a posteriori that
it is possible to move from β(ts) to ts(β) and vice versa.

Finally, using (3.14), we get the following results at the shoreline:

lim
β→α2

ṡ = 0, lim
β→α2

ṫs =
1

2
. (B 6)

Appendix C. Asymptotic behaviour near the shoreline
In this section we prove that dxx =2/9(t − t0)

2 at the shoreline and that such a result
does not depend on α2. To simplify the demonstration, we first prove that dxx =β 2

x /8,
and then we complete the proof by showing that βx =4/3(t − t0).

Proof C.1. Let us expand β in series near the shoreline (that is, at x = xN (t) ):

β(x, t) = α2 + βx |x=xN
(x − xN (t)) + O((x − xN (t))2). (C 1)

Assuming that dxx evaluated at x = xN (t) is always different from zero and using the
relation (7.8) to extract (x − xN (t)), we rewrite (C 1) as follows:

β(x, t) = α2 − βx |x=xN

√
2 d(x, t)

dxx |x=xN

+ O
(
(x − xN (t))3/2

)
, (C 2)

where the negative sign has been chosen because (x − xN (t)) � 0. Since
d =(α2 − β)2/16, it follows that

β(x, t) = α2 − βx |x=xN

(α2 − β(x, t))√
8 dxx |x=xN

+ O
(
(x − xN (t))3/2

)
, (C 3)

and finally

√
8 dxx |x=xN

= βx |x=xN
+ O

(
(x − xN (t))3/2

(α2 − β(x, t))

)
. (C 4)

As a consequence of (7.8), (x − xN ) = (α2 − β) + o(α2 − β) and, therefore,

lim
β→α−

2

(x − xN (t))3/2

(α2 − β(x, t))
= 0. (C 5)

Then, the expansion in (C 4) is well-posed and leads to the following relation:

dxx |x=xN
= 1

8
(βx |x=xN

)2. (C 6)

�

Note that, as in the Shen & Meyer (1963) solution, the result shown in
Proof C.1 implies that dxx � 0 at the shoreline. This means that the depth profile near
the shoreline is convex.

In the following theorem, we prove that βx = 4/3(t − t0) at x = xN (t). To evaluate
βx at the shoreline, we consider a generic β-characteristic curve emanating from
the shock wave and the shoreline equation (6.2). Since the latter coincides with a
β-characteristic curve with β = α2, this allows us to evaluate the variation of β in the
x-direction (see, for example, the sketch in figure 11).
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Figure 11. Sketch of the solution strategy for Proof C.2. The thick solid line represents the
shock waves while the dashed line represents a generic β-characteristic curve.

Proof C.2. Let us consider the equation of a β-characteristic curve emanating from
the shock wave at the point Ps = (ts, xs),

x = xs +

(
α2 + 3 β

4

)
(t − ts) − t2

2
+

t2
s

2
, (C 7)

and the equation of the shoreline,

xN = x0 + α2 (t − t0) − t2

2
+

t2
0

2
, (C 8)

which is generated at the point P0 = (t0, x0) where the shock wave collapses.
Subtracting (C 8) from (C 7) and rearranging, we obtain

x − xN = xs − x0 +
3

4
(β − α2) (t − ts) − α2 (ts − t0) +

(
ts + t0

2

)
(ts − t0). (C 9)

Then, using (C 1), we write

x − xN = xs − x0 +
3

4
βx |x=xN

(x − xN )(t − ts) − α2(ts − t0)

+

(
ts + t0

2

)
(ts − t0) + O((x − xN )2),

and dividing by (ts − t0), we finally obtain(
x − xN

ts − t0

)
=

(
xs − x0

ts − t0

)
+

3

4
βx |x=xN

(
x − xN

ts − t0

)
(t − ts) − α2

+

(
ts + t0

2

)
+ O

(
(x − xN )2

(ts − t0)

)
. (C 10)

Now, let us consider the limit ts → t0. In this case, the β-characteristic curves tend
to superimpose the shoreline and, consequently, x → xN . Since x and xN are both
β-characteristic curves, we can write

lim
ts→t0

(
x − xN

ts − t0

)
= lim

ts→t0

x(t, β)−x(t, α2)

ts − t0
. (C 11)

�
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As shown in Appendix B, all the quantities along the seaward side of the shock wave
can be expressed as functions of β . Then, ts = ts(β), t0 = ts(β = α2) and (C 11) becomes

lim
ts→t0

(
x − xN

ts − t0

)
= lim

β→α2

(
x(t, β) − x(t, α2)

β − α2

)(
β − α2

ts(β) − ts(α2)

)
= 2 xβ(t, β)|β=α2

,

where the second asymptotic expression in (B 6) has been used to get the correct
result. Then, assuming

xβ(t, β)|β=α2
�≡ 0, (C 12)

and, recalling that

lim
ts→t0

(
xs − x0

ts − t0

)
= s|x=xN

= u2|x=xN
= α2 − t0, (C 13)

the expansion in (C 10) gives

βx |x=xN
=

4

3 (t − t0)
. (C 14)

Note that such a result does not depend on α2. �

As a consequence of Proofs C.1 and C.2, we immediately find that

dxx |x=xN
=

2

9 (t − t0)2
. (C 15)

These results are completely general, since they do not depend on the flow conditions
shoreward of the shock wave and are only subjected to the hypothesis that α2 is
identically constant.
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